碲锌镉衬底晶面极性对水平液相外延碲镉汞薄膜的影响
霍勤 张诚焦翠灵王仍毛诚铭陆液乔辉 李向阳
(中国科学院上海技术物理研究所 红外成像材料与器件重点实验室 上海 200083)
DOI:10.11972/j.issn.1001-9014.2023.01.001
引言
1 实验
1.1 生长条件
1.2 测试设备和测试条件
2 结果和讨论
图1 (a)CdZnTe(111)A面液相外延HgCdTe五点红外透过光谱;(b)相应五点的组分和厚度计算值;(c)三片CdZnTe(111)A面液相外延HgCdTe的组分和厚度;(d)CdZnTe(111)B面液相外延HgCdTe五点红外透过光谱;(e)相应五点的组分和厚度计算值;(f)三片CdZnTe(111)B面液相外延HgCdTe的组分和厚度
Fig. 1 (a) Infrared transmission spectra of five points on HgCdTe LPE material on CdZnTe (111) A surface; (b) Its corresponding calculative values of composition and thickness of the five points; (c) Composition and thickness of three HgCdTe samples on CdZnTe (111) A surface; (d) Infrared transmission spectra of five points on HgCdTe LPE material on CdZnTe (111) B surface; (e) Its corresponding calculative values of composition and thickness of the five points; (f) Composition and thickness of three HgCdTe samples on CdZnTe (111) B surface;
图2 (a)CdZnTe(111)A面液相外延HgCdTe材料的宏观表面形貌照片;(b)CdZnTe(111)B面液相外延HgCdTe材料的宏观表面形貌照片Fig. 2 (a) Photo of LPE HgCdTe sample on CdZnTe (111) A surface;(b) Photo of LPE HgCdTe sample on CdZnTe (111) B surface
γgl·cosθ+γsg=γsl , | (1) |
图3 (a)(c)(e)CdZnTe(111)A面液相外延HgCdTe材料母液残留正侧向照片;(b)(d)(f)CdZnTe(111)B面液相外延HgCdTe材料母液残留正侧向照片
Fig. 3 (a) (c) (e) Droplet on LPE HgCdTe film on CdZnTe (111) A surface; (b) (d) (f) Droplet on LPE HgCdTe film on CdZnTe (111) B surface
图4 水平推舟液相外延HgCdTe母液在碲镉汞(111)表面接触吸附示意图:(a)HgCdTe母液熔体位于(111)A面;(b)HgCdTe母液熔体位于(111)B面Fig. 4 Schematic diagram of HgCdTe melt on HgCdTe film (111) surface in slider liquid phase epitaxal growth:(a) HgCdTe melt on HgCdTe (111) A surface;(b) HgCdTe melt on HgCdTe (111) B surface
图5 (a)CdZnTe(111)A面液相外延HgCdTe的表面显微形貌;(b)CdZnTe(111)B面液相外延HgCdTe的表面显微形貌
Fig. 5 (a) Surface morphology of LPE HgCdTe on CdZnTe (111) A surface; (b) Surface morphology of LPE HgCdTe on CdZnTe (111) B surface
图6 (a)CdZnTe(111)A面液相外延HgCdTe材料XRD双晶摇摆曲线(b)CdZnTe(111)B面液相外延HgCdTe材料XRD双晶摇摆曲线Fig. 6 (a) The ω-scans HRXRD rocking curve of LPE HgCdTe film grown on CdZnTe (111) A surface;(a) The ω-scans HRXRD rocking curve of LPE HgCdTe film grown on CdZnTe (111) B surface
3 结论
1. Rogalski A. History of infrared detectors [J]. Opto-Electronics Review, 2012, 20(3):279–308.
2. Chen Boliang, Li Xiangyang. Infrared imaging detectors for space applications [M]. Science Press, 2016.
陈伯良, 李向阳. 航天红外成像探测器 [M]. 科学出版社, 2016.
3. WenLei, Antoszewski J, Faraone O. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors[J]. Applied Physics Reviews, 2015, 2(4): 041303.
4. Gravrand O, Destefanis G, Bisotto S, et al. Issues in HgCdTe Research and Expected Progress in Infrared Detector Fabrication[J]. Journal of Electronic Materials, 2013, 42(11):3349-58.
5. Zeng Gehong. Development and Prospect of IR FPAs [J]. Infrared Technology, 1995, 17(3):5.
曾戈虹. 红外焦平面器件的研制与展望 [J]. 红外技术, 1995, 17(3):5.
6. Sun Quanzhi, Wei Yanfeng, Zhang Juan, et al. Effect of Lattice Mismatch on HgCdTe LPE Film Surface Morphology [J]. Journal of Electronic Materials, 2016, 45(9):1-6.
7. Capper P, Garland J, Kasap S, et al. Mercury cadmium telluride :growth, properties, and applications [J]. Journal of Physics & Chemistry of Solids, 2010, 47(1):65–8.
8. Granozzi G, Rizzi G A, Herman G S, et al. Polarity determination of the HgCdTe(111) surface by azimuthal X-ray photoelectron diffraction experiments [J]. Physica Scripta, 1990, 41(6):913.
9. Herman G S, Friedman D J, Tran T T, et al. X‐ray photoelectron diffraction from the HgCdTe(111) surface [J]. Journal of Vacuum Science & Technology B Microelectronics & Nanometer Structures, 1991, 235(3):1870-1873.
10. Takeuchi T, Kore-Eda T, Ebina A. Surface barriers formation mechanism of the chemically etched CdTe(111) polar surfaces and gold interfaces [J]. Applied Surface Science, 1996, s 100–101:596-600.
11. Zha Gangqiang, Jie Wanqi, Tan Tingting, et al. The atomic and electronic structure of CdZnTe (1 1 1) A surface [J]. Chemical Physics Letters, 2006, 427:196-200.
12. Kowalski B J, Orłowski B A, Ghijsen J. Oxide formation on the CdTe(111)A (1×1) surface [J]. Applied Surface Science, 2000, 166(1):237-41.
13. Shih H D, Kinch M A, Aqariden F, et al. Development of high-operating-temperature infrared detectors with gold-doped Hg0.70Cd0.30Te [J]. Applied Physics Letters, 2004, 84(8):1263-1265.
14. Tennant W E, Arias J M, Bajaj J. HgCdTe at Teledyne [C]. SPIE Defense, Security, & Sensing. International Society for Optics and Photonics, 2009.
15. Qiu Guangyin, Zhang Chuanjie, Wei Yanfeng, et al. As-doped HgCdTe films grown by Te-rich LPE [J]. J. Infrared Millim. Waves, 2012, 31(1):6.仇光寅, 张传杰, 魏彦锋,等. As掺杂碲镉汞富碲液相外延材料特性的研究 [J]. 红外与毫米波学报, 2012, 31(1):6.
16. Wu Jun, Mao Xufeng, Wan Zhiyuan, et al. Improvement of Compositional Uniformity of HgCdTe Grown by LPE [J]. Infrared Technology, 2014, 36(12):3.吴军, 毛旭峰, 万志远,等. 液相外延碲镉汞材料组分均匀性改善 [J]. 红外技术, 2014, 36(12):3.
17. Song Shufang, Tian Zhen. Preparation study of p-type As doped HgCdTe material [J]. Laser and Infrared, 2018, 48(12):3.
宋淑芳, 田震. 原位As掺杂p型碲镉汞薄膜的制备研究 [J]. 激光与红外, 2018, 48(12):3. 10.3969/j.issn.1001-5078.2018.12.009
18. Weiss E. Thirty years of HgCdTe technology in Israel [C]. Infrared Technology & Applications XXXV. International Society for Optics and Photonics, 2009.
19. Weiss E, Klin O, Benory E, et al. Substrate quality impact on the carrier concentration of undoped annealed HgCdTe LPE layers [J]. Journal of Electronic Materials, 2001, 30(6):756-761.
20. Benson J D, Varesi J B, Stoltz A J, et al. Surface structure of (111)A HgCdTe [J]. Journal of Electronic Materials, 2006, 35(6):1434-1442.
21. Yang Jianrong. Physics and technology of HgCdTe materials [M]. National Defense Industry Press, 2012.
杨建荣. 碲镉汞材料物理与技术 [M]. 国防工业出版社, 2012.
22. L.D.Landa, E.M.Lifshitz. Statistical Physics [M]. Higher Eduction Press, 2012.
Л·Д·朗道, Е·М·栗弗席兹. 统计物理学 [M]. 高等教育出版社, 2012.
23. Shigenaka K, Sugiura L, Nakata F, et al. Effects of growth rate and mercury partial pressure on twin formation in HgCdTe (111) layers grown by metalorganic chemical vapor deposition[J]. Journal of Electronic Materials, 1993, 22(8):865-871.
24. Nishino H, Murakami S, Nishijima Y. Structure and Surface Properties of Metalorganic Vapor Phase Epitaxial CdTe and HgCdTe(111)B Layers Grown on Vicinal GaAs(100) Subatrates [J]. Japanese Journal of Applied Physics, 1999, 38(Part 1, No. 10):5775-82.
25. Wang Jianli, Tang Gang, X.S. Wu, et al. The adsorption of O on (001) and (111) CdTe surfaces:A first-principles study [J]. Thin Solid Films, 2012, 520:3960-4.
26. Bai Xuxu, Jie Wanqi, Zha Gangqiang, et al. Adsorption of water molecules on the CdZnTe (111) B surface [J]. Chemical Physics Letters, 2010, 489(1-3):103-6.
27. Radhakrishnan J K, Sitharaman S, Gupta S C. Surface morphology of Hg0.8Cd0.2Te epilayers grown by LPE using horizontal slider [J]. Applied Surface Science, 2003, 207:33-9.
28. Mao Xufeng. Research on Preparation of HgCdTe films Crystal by liquid crystal phase epitaxy [D]. Yunnan University, 2013.
毛旭峰. 利用液相外延制备HgCdTe薄膜晶体的研究 [D]. 云南大学, 2013.
29. Pelliciari B. Te-rich liquid-phase epitaxy of Hg 1x Cd x Te [J]. Progress in Crystal Growth and Characterization of Materials, 1994, 29(1-4):1-39.
30. Castelein P, Baier N, Gravrand O, et al. Latest developments on p-on-n HgCdTe architectures at DEFIR[J]. proceedings of the SPIE, 2014, 9070:90702Y-1-14.
31. Sun Quanzhi, Sun Ruiyun, Wei Yanfeng,et al. Batch production technology of 50mm×50mm HgCdTe LPE materials with high performance [J]. J. Infrared Millim. Waves, 2017, 36(1):6.孙权志, 孙瑞赟, 魏彦锋, 等. 50mm×50mm高性能HgCdTe液相外延材料的批生产技术 . 红外与毫米波学报, 2017, 36(1):6.
Effect of polarity of CdZnTe substrate on slider liquid phase epitaxy of HgCdTe
HUO Qin ZHANG ChengJIAO Cui-LingWANG RengMAO Cheng-MingLU YeQIAO Hui LI Xiang-Yang
(Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083,China)
引用本文: 霍勤,张诚,焦翠灵等.碲锌镉衬底晶面极性对水平液相外延碲镉汞薄膜的影响[J].红外与毫米波学报,2023,42(01):1-7. (HUO Qin,ZHANG Cheng,JIAO Cui-Ling,et al.Effect of polarity of CdZnTe substrate on slider liquid phase epitaxy of HgCdTe[J].Journal of INFRARED AND MILLIMETER WAVES,2023,42(01):1-7.)
作者简介:霍勤(1990-),男,四川射洪人,助理研究员,博士,主要从事红外探测器材料生长和性能表征的研究。E-mail:huoqin@mail.sitp.ac.cn
通讯作者:E-mail:qiaohui@mail.sitp.ac.cn
基金信息: 国家重点研发计划(2018YFB0504700);上海市青年科技英才扬帆计划(19YF1454800)
中图分类号: TN213
文章编号:1001-9014(2023)01-0001-07
文献标识码: A
收稿日期:2022-03-17
修回日期:2022-11-06
出版日期:2023-02-25
网刊发布日期:2023-01-18